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Abstract

The emergence of deep neural networks capable of revealing high-fidelity scene de-
tails from sparse 3D point clouds has raised significant privacy concerns in visual local-
ization involving private maps. Lifting map points to randomly oriented 3D lines is a
well-known approach for obstructing undesired recovery of the scene images, but these
lines are vulnerable to a density-based attack that can recover the point cloud geometry
by observing the neighborhood statistics of lines. With the aim of nullifying this attack,
we present a new privacy-preserving scene representation called sphere cloud, which is
constructed by lifting all points to 3D lines crossing the centroid of the map, resembling
points on the unit sphere. Since lines are most dense at the map centroid, the sphere
cloud mislead the density-based attack algorithm to incorrectly yield points at the cen-
troid, effectively neutralizing the attack. Nevertheless, this advantage comes at the cost
of i) a new type of attack that may directly recover images from this cloud representation
and ii) unresolved translation scale for camera pose estimation. To address these is-
sues, we introduce a simple yet effective cloud construction strategy to thwart new attack
and propose an efficient localization framework to guide the translation scale by utiliz-
ing absolute depth maps acquired from on-device time-of-flight (ToF) sensors. Experi-
mental results on public RGB-D datasets demonstrate sphere cloud achieves competitive
privacy-preserving ability and localization runtime while not excessively compensating
the pose estimation accuracy compared to other depth-guided localization methods.

1 Introduction
Visual localization, which refers to the task of estimating the 6-DOF camera pose from

an input image, is a key computation in autonomous driving, extended reality (XR) [1, 4] and
robotics [4, 18, 22]. While a full taxonomy of localization algorithms exists in the literature,
the mainstream pipeline to this date comprises the following steps: i) build a sparse 3D point
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(a) Ground Truth (b) ULC [35] (c) PPL [16] (d) Sphere cloud (ours)
Figure 1: (Top) visualization of different 3D scene representations (Office1 manolis from
12 Scenes [38]). ULC [35] denotes uniform line cloud and PPL [16] denotes paired-point
lifting. (Middle) recovered 3D points from the geometry revealing attack [6]. (Bottom)
images reconstructed via InvSfM [28] using the recovered 3D points. Since our sphere cloud
always results in points recovered at the sphere centre, the recovered scene images are blank.

cloud of the scene via structure-from-motion (SfM) [31], ii) match keypoints of the query
image against the features in the point map and iii) perform perspective-n-points to obtain the
camera pose. The point cloud and descriptors are either stored on the server for cloud-based
localization or distributed to the client (e.g. a robot or XR device) for real-time localization.

Until recently, it was perceived that these point maps, which may often comprise a private
or confidential area/objects, are usually sparse enough to discourage any attempt by curious
intruders or malicious clients to reveal scene details from the 3D points. Nevertheless, the
work of Pittaluga et al. [28] called InvSfM showed possibility of recovering high-fidelity
scene images from the sparse point cloud, raising significant privacy concerns when using the
barebone point maps for localization. Currently, one of the most widely known approaches to
mitigating this issue is to conceal the point map as a line cloud, which is constructed by lifting
each point to a 3D line [16, 35], subsequently hiding the point locations and disabling direct
image synthesis using InvSfM. Unfortunately, this line of works is potentially vulnerable to
the density-based attack [5] (see Fig. 1 for an example), which can effectively reverse the 3D
lines back to points using the neighbourhood statistics of the lines. Providing a full defense
against such attack is yet an unaccomplished goal and serves as our main motivation.

In this work, we present a new privacy-preserving scene representation called sphere
cloud in an effort to nullify aforementioned geometry-revealing attack [5]. The sphere cloud,
which is simply constructed by lifting points to 3D lines passing through the centroid of the
point cloud (which can be viewed as points on the unit sphere centered at the map centroid),
has the advantage of completely disabling the geometry-revealing attack [5] by forcing the
neighbourhood line statistics to lead to a degenerate point recovery (see Sec. 3 for details).
Unfortunately, employing a sphere cloud for privacy-preserving visual localization is not
straightforward due to two issues, that i) a new type of attack (discussed in Sec. 3) may partly
reveal scene details about the map centroid and ii) the camera pose can only be retrieved up
to unknown scale. We tackle the first issue by proposing a simple effective strategy to hinder
new attack and address the second issue by utilizing calibrated depth maps that can be easily
acquired from an on-device time-of-flight (TOF) sensor to resolve the translation scale.

Our contributions in this work are summarized as follows:
• a novel privacy-preserving scene representation called sphere cloud which completely

avoids known density-based attack and disables recovery of the point cloud geometry,
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Estimated location3D point
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Nearest 3D line

GT point
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(a) Uniform line cloud (ULC) [35]

3D point
𝑙

Estimated location

(b) Sphere cloud (ours)
Figure 2: A motivating illustration for the sphere cloud. As shown in (a), the density-based
geometry-revealing attack in [5] recovers the point location of each line by constructing a
histogram of point candidates on the line that are closest to K-nearest neighbouring lines and
finding the peak of the histogram. While this method often yields good point estimates for
uniform line clouds, all lines from the sphere cloud in (b) intersect at the map centroid, and
consequently the points estimated via peak finding are incorrectly recovered at the centroid.

• a simple yet effective strategy based on cloud sparsification and descriptor augmenta-
tion to thwart a new type of attack from breaching the sphere cloud, and

• to the best of our knowledge, the first privacy-preserving framework to leverage raw
depth information from a ToF sensor for efficient camera pose estimation.

2 Related work
Revealing private scene details from sparse point cloud The first method that succeeded
in revealing high-fidelity scene details from a sparse point cloud was proposed by Pittaluga et
al. [28], in which a network called InvSfM based on cascaded U-Net [30] is employed to re-
construct a scene image from a set of inputs including 2D locations of the projected 3D
points as well as corresponding depths, RGB values and SIFT descriptors. As noted in [35],
this raised alarms as any confidential maps (e.g. inside a factory) or public maps with tem-
porary private objects inadvertently obtained by a user can now be revealed in detail. While
extensions of this work have been proposed to reconstruct images without keypoint descrip-
tors [34] or with different types of descriptors [8], the pretrained InvSfM model is still widely
used as the baseline for analyzing the privacy-preserving capability [5, 16, 20, 24, 26].

Privacy-preserving 3D scene representations With the aim of obstructing use of InvSfM
for scene image reconstruction, Speciale et al. [35] proposed line cloud in which each point
is represented as a randomly oriented 3D line passing through the original point, intending
to conceal the scene geometry by introducing ambiguities in the point locations. While this
was initially perceived as an effective strategy to block attempts for revealing scene details
and extended to simultaneous localization and mapping (SLAM) [32], it was later shown by
Chelani et al. [5] that line clouds with uniformly distributed line directions are vulnerable to a
density-based geometry-inversion attack that can accurately recover the scene points (more
details at the end of Sec. 2), from which the scene images can subsequently be revealed
(see Fig. 1 (b)). While this weakness was addressed in [16] by drawing 3D lines through
random pairs of 3D points to induce combinatorial complexity in point cloud recovery, it is
not fully impervious to the geometry-revealing attack [5] as observed in the second row of
Fig. 1 (c). The most similar work to our approach is [20], in which all 3D lines intersect
through one of two pre-defined 3D locations to reduce the effectiveness of the density-based
attack [5]. However, this method does not theoretically guarantee full defense against [5]
and moreover, it can be vulnerable to another type of attack involving direct image synthesis
at the intersections (see Sec. 3.1).
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Figure 3: An overview of our complete strategy for constructing a sphere cloud. (A) we find
the centroid of the sparse 3D point map. (B) we create a basic sphere cloud by projecting
the 3D points onto the unit sphere centred at the map centroid. (C) we discard a portion of
sphere points from the sphere cloud but keep their RGB values and SIFT descriptors. (D) we
generate fake points around the remaining points with their RGB values and SIFT descriptors
recycled from the rejected points. Since the basic construction from (A)+(B) may be prone
to a new attack based on direct image synthesis, we enhance the strategy through (C)+(D).

Other types of scene representations include the work of Geppert et al. [11], in which
the sparse point cloud is divided into three 1D partial maps stored in separate servers for en-
hanced security at the cost of reduced off localization accuracy and runtime. Pan et al. [24]
proposed to pair up 3D points and permute coordinates between each pair of points to disal-
low meaningful reconstruction of the scene while enabling accurate localization, but the per-
mutation process incurs combinatorial search over the correct camera pose, drastically slow-
ing the localization speed. Overall, these approaches are not susceptible to the geometry-
inversion attack [5] but they are computationally much more involved than line cloud-based
approaches, impeding their practical use for efficient real-time localization. Currently, no
representation can fully bypass above attack while maintaining real-time localization speed.

Localization using 3D line clouds The classic absolute camera pose estimation prob-
lem involving a 3D point cloud can be solved with an efficient perspective-n-point (pnP)
solver [9, 14, 25] derived from the 2D-3D point-to-point constraints. In contrast, line clouds
can only introduce weaker constraints between 2D points and 3D lines. Speciale et al. [35]
noted absolute pose estimation with line clouds is identical to the problem of generalized
relative pose estimation, and proposed a perspective-6-lines (p6L) algorithm based on the
minimal solver for generalized relative pose estimation [36]. Due to the intrinsic flexibil-
ity of generalized cameras, p6L yields 64 pose candidates for each of six 2D point-3D line
correspondences from which the correct solution needs to be identified via geometric verifi-
cation. Hence, employing p6L contributes to much increased runtime when compared with
p3P that only yields 4 pose candidates for each of three 2D-3D point correspondences.

Geometry-revealing density-based attack for line clouds Chelani et al. [5] proposed an
algorithm for recovering the original points from a uniform 3D line cloud [35]. This work is
motivated by the empirical observation that for any two distinct 3D points and their lifted 3D
lines, the points on the lines which are closest to the counterpart lines are likely to be in the
proximity of the original 3D points. As shown in Fig. 2(a), this result is extended to consider
the closest points to multiple neighbouring lines as point candidates (green) for each line.
The final point location is estimated by finding the peak (black) of the histogram of these
point candidates which is usually close to ground truth (blue) as long as the line directions
are uniformly distributed. We neutralize this attack by essentially breaking this assumption
as will be described in Sec. 3, leading to an incorrect recovery (see Fig. 2(b)).
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(a) Pseudo-GT (b) σ2 = 0 (c) σ2 = 0.01 (d) σ2 = 0.1 (e) σ2 = 1
Figure 4: Effect of our fake point generation strategy on the direct image-synthesis attack.
We use the η = 0.33 setting whereby 67% sphere points are discarded and replaced by fake
points recycling the SIFT descriptors of the rejected points. Pseudo-GT stands for an image
reconstructed via InvSfM [28] about the sphere centre using the original points. σ denotes
the standard deviation of Gaussian noise injected to generate fake points (see Sec. 3.2). We
determine σ2 = 0.1 as the “sweet” spot as it hides both the scene geometry and image details.

3 Sphere cloud

Motivations As shown in Fig. 2(a), [5] recovers the 3D points by constructing a histogram
of point candidates for each 3D line (i.e. a set of points on the line each of which is closest
to one of the neighboring lines) and finding the peak of this histogram. Now, if all lines are
lifted to meet at a single point c ∈ R3, then the point candidates for each line will always
be located at the intersection point as any two lines are the closest at c. Consequently, the
peak of the histogram is always at c, leading to a degenerate recovery and thereby voiding
the attack (see Fig. 2(b)). This motivates us to have all lines lifted to meet at a single point.

Unfortunately, the above representation is not sufficient to yield a unique camera rotation.
Since the 3D lines intersecting at a single point can be viewed as rays from a virtual camera
centered at the intersection point (see Fig. 5(b)), estimating camera pose from these lines
resembles the relative pose estimation problem between the query camera and virtual camera
(also noted in [5]). Out of 4 possible configurations [12] between the two cameras, we can
choose the correct solution only if the cheirality is enforced on the lifted 3D lines (more
details in [21]). This serves as motivation for storing each line li as a point x̂i ∈ S2 on the unit
sphere centered at c such that the original point is always along the positive direction of x̂i.

3.1 Basic construction procedure and limitations
Constructing a basic 3D sphere cloud involves two straightforward steps (steps A and B

in Fig. 3). First, we set the intersection point as the mean centroid of the 3D point cloud
to ensure the resulting line directions are roughly evenly distributed for stable localization
(see [21] for discussions). Second, we project all 3D points onto the unit sphere centred at
the map centroid to create a basic 3D sphere cloud. Unfortunately, there are two major issues
with deploying this basic implementation for privacy-preserving visual localization.

Possible attack based on direct image synthesis While the sphere cloud does not leak
any scene geometry, an intruder may seek to directly reveal images from the sphere cloud.
The simplest approach is to project the sphere points to a virtual image plane and feed the
projected points and their descriptors to InvSfM [27]. Although the intruder is confined to
viewpoints about the map centroid, Fig. 4(a) shows this attack can partly reveal the scene.
We aim to thwart this attack through an enhanced construction strategy in Sec. 3.2.
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𝑙3𝑙2
𝑙1

𝑙5 𝑙4 𝑙6

(a) p6L solver for line clouds [35]

Sphere center

(b) p3P solver for the sphere cloud
Figure 5: Comparison of minimal solvers for privacy-preserving localization. In (b), the
depth map allows lifting keypoints to 3D and estimating pose using an efficient p3P solver.

Unresolved translation scale As mentioned earlier in Sec. 3 camera pose estimation using
the sphere cloud boils down to the perspective relative pose estimation problem, meaning
the translation scale is unknown [23]. As many modern commercial devices such as iPad or
HoloLens 2 comprise depth sensors, we attempt to efficiently leverage calibrated raw depth
maps from the on-device time-of-flight (ToF) sensor to retrieve absolute scale (see Sec. 3.3).

3.2 Enhanced construction strategy
To hinder direct image synthesis from the sphere points, we add fake points to the sphere

cloud. This is inspired by the observation that embedding fake points between real keypoints
degrades the quality of scene images reconstructed via InvSfM (see Fig. 4).

Cloud sparsification As excess number of fake points can make the sphere dense and slow
the localization speed, we avoid this by keeping the total number of sphere points fixed. If
the desired proportion of true positive sphere points is η , then we discard 1−η of all points.

Generating fake point locations We employ a simple approach of adding Gaussian noise
to the coordinates of existing sphere points, i.e. where x̂i ∈ S2 is the i-th sphere point, zi j
is the j-th fake point generated in the proximity of x̂i and ε ∼ N(0,σ2I) is Gaussian noise
with σ2 set to 0.1. The number of fake points generated per sphere point is constant. Since
the total number of sphere points remains constant, we generate (1−η)/η fake points for
each remaining sphere point (e.g. if η = 33%, then we discard 67% points and create two
new fake points per remaining sphere point.)

Assigning fake point descriptors via recycling After assigning the fake point locations,
we need to designate a realistic feature descriptor to each fake point. We refrain from using
keypoint descriptors extracted from a large database of images [10] as there is a potential
risk of this database being hijacked in which case the fake points can be easily pruned.
We also do not adopt a learning-based scheme as the generated descriptors may potentially
be detected by training a discriminator network. Instead, we resort to a simple strategy of
recycling the descriptors of discarded sphere points. Since the number of fake points is equal
to the number of rejected points, this amounts to a simple permutation of descriptors from
the rejected points followed by assignment of these features to the fake point locations.

As shown in Fig. 8, this strategy effectively mitigates the issue of direct image synthesis
for the sphere cloud. Additionally, adjusting η controls the trade-off between localization
accuracy and privacy-preserving ability as shown in Fig. 8 and Table 2.

3.3 Camera pose estimation using RGB image and depth map
We illustrate a framework for absolute pose estimation using the sphere cloud assuming

the query has an aligned pair of RGB image and absolute depth map with known intrinsic.
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(b) LPIPS [39] of recovered images
Figure 6: Cumulative distributions of (a) the geometric error (eg) of 3D points recovered
using [5] and (b) LPIPS of reconstructed images from InvSfM [28].

Efficient initial pose estimation via perspective-n-points Fusing the query RGB image
with its aligned depth map allows us to lift each 2D keypoint ui ∈ R2 to the 3D space as
pi = zTOF

i K−1[u⊤
i ,1]

⊤, where zTOF
i ∈ R is the depth of ui obtained from the ToF sensor and

K∈R3×3 is the camera intrinsics. We note aligning these 3D keypoints {pi} with the matched
3D lines {li} from the sphere cloud is nearly identical to the perspective-n-points problem
except that the 3D points are on the query side and not on the map side (see Fig. 5(b)).

Ideally, the 3D keypoint pi should lie along the positive direction of the vector shooting
out from the sphere centre and passing through the sphere point x̂i, i.e. where [R|t] defines the
query-to-world (sphere cloud) transformation. This geometric constraint can be efficiently
solved using a combination of LO-RANSAC [15, 19] and the p3P solver [25], which only
needs 4 correspondences compared to 6 required in the absence of depth maps [16, 24, 35].
The final (world-to-query) pose is obtained as [R⊤|−R⊤t], and heavy outliers are pruned by
checking the epipolar distance in Eq. (1) and the depth error in Eq. (2). The threshold values
used in our implementation can be found in supplementary material.

Pose refinement with depth regularization After an initial pose is obtained, we refine the
pose via nonlinear optimization [15]. Since the sphere cloud can be viewed as a special type
of line cloud, we follow the direction of other line clouds [16, 35] and partly minimize the
square of epipolar distance between the projection of 3D lines derived from the sphere cloud
and the 2D query keypoints. The resulting loss function for the i-th keypoint, Le

i , is

Le
i =

([u⊤
i ,1]K

−⊤ E x̃i)
2

(e⊤1 x̃i)2 +(e⊤2 x̃i)2
(1)

where E := [e1,e2,e3]
⊤ denotes the essential matrix between the sphere cloud and the query

camera, and x̃i = x̂i/|x̂iz| is the z-normalization of the sphere point x̂i.
Since (1) is oblivious to the translation scale, we additionally employ a depth regulariza-

tion term to guide the camera pose to the correct scale. For this purpose, we define another
loss

Ld
i = (βi −1)2, (2)

where βi = zi/zTOF
i is the proportional difference between the predicted depth zi(R, t) from

the current pose and the sphere cloud and the observed depth zTOF
i (an analytic derivation of

zi(R, t) can be found in [21]).
The overall cost function iteratively minimized over R and t is

L = ∑
i∈Ω

(
Le

i +λ Ld
i

)
, (3)

where λ is the hyperparameter empirically set to 10−4 and Ω represents all of the 2D–3D
correspondences on the query image. (more details in [21]).

4 Experiments
Datasets We used two public RGB-D camera re-localization datasets as presented in [33,
38]. 7-Scenes [33] and 12-Scenes [38] consist of several RGB and depth frames of indoor
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(a) Ground truth (b) Point cloud (c) ULC [35] (d) PPL [16] (e) PPL+ [16] (f) Sphere cloud
Figure 7: Images revealed from some test camera poses across different scene representation
via InvSfM [28]. (Top) Apt2 kitchen in 12-Scenes [38]. (Bottom) Office in 7-Scenes [33].

Table 1: Quantitative analysis of the direct image-synthesis attack (see Sec. 3.1) on sphere
clouds. Each image is reconstructed from an arbitrary viewpoint at the sphere centre. Since
no ground truth images are available for these viewpoints, the metrics are calculated using
the images reconstructed from 3D point clouds as pseudo-ground truth, but these are often
very noisy for the 7-Scenes dataset as shown in Fig. 8. For the sphere cloud, results are
reported across different proportions of true positive sphere points (η).

Dataset Metric ULC [35] PPL [16] PPL+ [16]
Sphere

(η=25%)
Sphere

(η=33%)
Sphere

(η=50%)

12-Scenes
[38]

PSNR (↓) 16.06 11.99 11.30 12.70 13.53 14.94
LPIPS (↑) 0.456 0.539 0.542 0.568 0.534 0.488
SSIM (↓) 0.519 0.440 0.436 0.372 0.429 0.493
MAE (↑) 31.82 55.91 56.88 47.19 42.53 35.39

7-Scenes
[33]

PSNR (↓) 13.11 11.04 10.84 13.41 14.01 15.29
LPIPS (↑) 0.548 0.602 0.603 0.550 0.533 0.498
SSIM (↓) 0.417 0.390 0.380 0.393 0.417 0.471
MAE (↑) 44.85 59.37 60.50 43.25 40.28 34.13

spaces captured with multiple sequences. For 7-Scenes [33], we followed additional proce-
dures in [2] to align depth maps to RGB images (not required for 12-Scenes).

Implementation details We implemented our RGB-D localization pipeline for sphere
clouds using the PoseLib library [15] and brought the inversion pipeline from [16].
For our localization experiment, we used the official RGB-D benchmark released by [3]
based on the above two datasets [33, 38] which contains sparse 3D point clouds reconstructed
using COLMAP [31] and the lists of test images. However, as [3] does not provide the SIFT
descriptors [17] required for image recovery, we carefully reconstructed these point clouds
ourselves using COLMAP following the same protocol of [3] and used them along with the
same set of test images for comparing the privacy-preserving capability of different methods.
All our experiments were carried out on a PC with Intel CPU i9-13900K running at 3.0 GHz
and a single NVIDIA RTX 4090 graphics card.

Evaluation metrics For the quantitative evaluation of 3D point recovery using [5], we
reported the 3D point error eg = ∥g−g∗∥2 between the estimated point g ∈ R3 and the
original point g∗ ∈ R3. For comparing the image reconstruction quality, we used the peak
signal-to-noise ratio (PSNR), learned perceptual image patch similarity (LPIPS), structural
similarity index measure (SSIM) and mean absolute error (MAE) metrics. For evaluating the
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(a) Pseudo-GT (b) ULC [35] (c) PPL [16] (d) PPL+ [16] (e) Ours (25%)(f) Ours (33%)(g) Ours (50%)
Figure 8: Visualization of images directly reconstructed from sphere clouds about the sphere
centre. (Top) apt2 kitchen in 12-Scenes [38]. (Bottom) office in 7-Scenes [33]. (a) is the
result of applying InvSfM [28] to the original point cloud. (e), (f), and (g) are the results
of the sphere cloud across different proportions of true positive sphere points (η). Note the
viewpoints are deliberately chosen to be close to the test poses in Fig. 7 for better comparison.

localization performance, we followed [3] and reported the rotation error as ∆R = ∠(RR∗⊤)
and the translation error as ∆t = ∥t− t∗∥2, where R∗ ∈ SO(3) and t∗ ∈ R3 are the ground
truth camera pose of the query image available in the benchmark [3].

Results of 3D point recovery As shown in Fig. 6(a) sphere cloud achieves significantly
higher geometric errors compared to ULC [35] and PPL/PPL+ [16] due to its ability to
neutralize the geometry-revealing attack [5]. This pattern is repeated in Fig. 6(b) where the
sphere cloud shows the lowest image quality due to large geometric errors. Also, Fig. 7(f)
shows that no content is revealed using the 3D points estimated from the sphere cloud.

Direct image reconstruction about the map centroid We tried to assess the sphere cloud’s
resilience to a new type of attack based on direct image-synthesis about the sphere centre.
For this purpose, we rotated the camera viewpoint about the sphere centre (map centroid)
and projected sphere points to a virtual image plane for image reconstruction via InvSfM.
Since no ground truth is available for these synthesized views, we used the pseudo-GT in
Fig. 8 for evaluation as described in Table 1. For ULC [35] and PPL/PPL+ [16], we used
the recovered 3D points using [5] to reconstruct these images. As shown in the same table,
the sphere cloud achieves relatively high privacy-preserving ability against this new attack
on 12-Scenes which is qualitatively verified in Fig. 8. However, sphere cloud surprisingly
underperforms in the 7-Scenes [33] dataset. While this requires further investigation, we
anticipate this is partly due to noisy pseudo-GT images in 7-Scenes as observed in Fig. 8.

Localization results Table 2 presents the overall performance of different localization
methods including DVLAD+R2D2(+D) [13, 29, 37] and DSAC∗(+D) [2] both of which
serve as baselines for evaluating depth-guided approaches. Notably, sphere cloud with
η=33% runs real-time unlike ULC and PPL/PPL+ as the result of being able to use the p3P
solver [25]. On the downside, we observe reduced camera localization accuracy compared
to image-based methods, and a slight increase in translation errors when compared to other
depth-guided methods. Among the depth-guided methods, sphere cloud exhibits the lowest
median rotational errors on both datasets while DSAC* (trained with rendered depth maps)
achieves the lowest translation errors. Overall, the sphere cloud shows efficient runtime with
a slight reduction in translation accuracy compared to other depth-guided methods.
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Table 2: Comprehensive comparison of localization performance across different visual lo-
calization methods which are categorized into two groups: Image-based and depth-guided.
The median error of rotation (∆R) [◦], translation (∆t) [cm] and the ratio (%) of the query
images localized within each rotation and translation threshold are reported as in [3]. Run-
time [ms] includes the whole iterations of LO-RANSAC [7, 15] and non-linear refinement.
⋆ indicates that results are from the official code in [3] and runtime of [13] is not reported
in [3]. Note, oracle denotes results of depth oracle (z-oracle) in sphere cloud . Bold indicates
the best result in each category.

Image-based localization Depth-guided localization

Dataset Metric
Point cloud

[25]

ULC

[35]

PPL

[16]

PPL+

[16]

DVLAD⋆

+R2D2(+D)[13]

DSAC*

(+D)[2]

Sphere

(η=25%)

Sphere

(η=33%)

Sphere (oracle)

(η=25%)

Sphere (oracle)

(η=33%)

12-Scenes

[38]

∆R(◦) (↓) 0.139 0.159 0.170 0.168 0.389 0.397 0.300 0.288 0.240 0.232

∆t (cm) (↓) 0.627 0.727 0.775 0.765 0.931 0.735 1.310 1.282 0.601 0.577

∆R<3◦ (%) (↑) 100.0 100.0 100.0 100.0 99.73 99.98 99.00 99.34 99.90 100.0

∆t<3cm (%) (↑) 97.94 95.88 95.16 95.13 97.06 99.21 86.97 87.86 97.22 97.60

Runtime(ms) (↓) 3 96 91 91 - 84 48 24 22 13

7-Scenes

[33]

∆R(◦) (↓) 0.174 0.201 0.206 0.207 0.966 0.655 0.438 0.405 0.262 0.255

∆t (cm) (↓) 0.493 0.613 0.647 0.647 2.857 1.573 2.119 2.051 0.459 0.443

∆R<3◦ (%) (↑) 100.0 100.0 100.0 100.0 96.11 99.05 97.00 97.58 99.86 99.93

∆t<3cm (%) (↑) 99.85 99.32 99.12 98.96 55.90 82.81 69.75 70.93 98.21 98.51

Runtime (ms) (↓) 3 82 78 79 - 80 52 25 31 16

We also compared the localization performance of the depth-oracle case of the sphere
cloud. Due to the reduced noise in depth measurements, we observed improvements in the
localization accuracy of the sphere cloud in oracle cases, likely from the accuracy of the
solutions obtained by the p3P solver [25]. Surprisingly, the oracle cases of the sphere cloud
show competitive localization accuracy compared to ULC [35] and PPL/PPL+ [16] and sig-
nificantly outperform them in runtime due to the allowance of the efficient p3P solver. Hence,
we anticipate further research of reducing noises on depth measurements will improve the
localization accuracy of the sphere cloud.

5 Conclusion and limitations
In this work, we presented a new privacy-preserving scene representation called sphere

cloud which can nullify the known geometry-revealing attack for line clouds. We noted the
main challenges in realizing this representation, namely the possibility of a new type of at-
tack directly revealing images from the sphere points about the map centroid and the issue of
unresolved translation scale. We addressed these issues by introducing fake points with recy-
cled real descriptors to thwart direct image reconstruction and presenting an efficient RGB-D
privacy-preserving localization framework to guide the translation scale. Experimental re-
sults showed that sphere cloud successfully neutralizes the known geometry attack and gains
resilience to a new direct attack while reporting around 20–30 fps localization speed. This
demonstrates its potential as an efficient privacy-preserving scene representation.

Out of many limitations, our framework exhibits lower translation accuracy due to noisy
depth measurements. We also observe the trade-off between localization accuracy and privacy-
preserving performance when the proportion of true positive sphere points (η) changes and
we have not outlined a principled approach to setting η along with other hyperparameters
(e.g. σ ) to yield optimal performance. We leave improvements to these for future work.
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